MATH 202 Differential Equations

Exam 2, Spring 2019

Duration: 60 minutes

Problem	1	2	3	4	5	6	Total
Points	15	15	12	30	15	13	100

Please circle your section: /
Lecture 1 MWF 3

Moufawad

Lecture 2 MWF 11 Yamani

Lecture 3 MWF 10 Sabra

Lecture 4 MWF 2

Lecture 5 MWF 8

Lecture 6 MWF 1 Taghavi- Chabert

INSTRUCTIONS

- (a) Explain your answers precisely and clearly to ensure full credit.
- (b) Calculators are not allowed.
- (c) Use the backside of each page if needed.

(15 pts) Use the divergence theorem to find the outward flux of the field $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}$ through the surface of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 1.

Given the ODE
$$y'' = -\frac{1}{4x}y' - \frac{1}{8x^2}y$$
, $x > 0$

(a) (5 pts) Show that $y_1 = \sqrt{x}$ is a solution of the given ODE.

(b) (10 pts) Find a solution y_2 that is linearly independent of y_1 . (Verify that y_1 and y_2 are linearly independent). Conclude the general solution of the ODE.

(12 pts) Find an appropriate integrating factor to make the given ODE exact. Then solve the IVP

$$\begin{cases} (3x^2 + y + 2)y' = x \\ y(1) = 0 \end{cases}$$

(10 pts each) Solve each of the following IVPs.

a.
$$\begin{cases} (x^2 + 1)\frac{dy}{dx} + xy = (x^3 + x)y^3 \\ y(0) = 1 \end{cases}$$

(You may leave your solution in implicit form).

b.
$$\begin{cases} y'e^{-(x^2+\cos x)} = (2x-\sin x)(y^2-25) \\ y(0) = 0 \end{cases}$$
 (You may leave your solution in implicit form).

c.
$$\begin{cases} \frac{dy}{dx} = \frac{\sqrt{1 - (x + y)^2}}{x + y} - 1 \\ y(0) = \frac{1}{2} \end{cases}$$

(You may leave your solution in implicit form).

(15 pts) Use the substitution $y = e^{3z}$ to reduce the following ODE

$$6xe^{3z} dz - (x^2e^{-3z} + e^{3z}) dx = 0$$

to a homogeneous ODE. Solve the obtained homogeneous ODE. Then deduce z(x), the explicit general solution of the given ODE.

a. (4 pts) Find the general solution of the ODE:

$$y''' + 2y'' + y' + 2y = 0$$

b. Do the following IVP's have a solution? If yes, is it unique? Justify your answer.

(i) (3 pts)

$$\begin{cases} y' = (x^2 + y^2)\sqrt{x - 2} \\ y(3) = 3 \end{cases}$$

(ii) (3 pts)
$$\begin{cases} y'' = (x^2 + y)\sqrt{x - 2} \\ y(3) = 3, \ y'(3) = 4 \end{cases}$$

(iii) (3 pts)
$$\begin{cases} y = (x^2 + (y')^2)\sqrt{x - 2} \\ y(3) = -1 \end{cases}$$